Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(4): e1009991, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35395020

RESUMO

Cellular barcoding methods offer the exciting possibility of 'infinite-pseudocolor' anatomical reconstruction-i.e., assigning each neuron its own random unique barcoded 'pseudocolor,' and then using these pseudocolors to trace the microanatomy of each neuron. Here we use simulations, based on densely-reconstructed electron microscopy microanatomy, with signal structure matched to real barcoding data, to quantify the feasibility of this procedure. We develop a new blind demixing approach to recover the barcodes that label each neuron, and validate this method on real data with known barcodes. We also develop a neural network which uses the recovered barcodes to reconstruct the neuronal morphology from the observed fluorescence imaging data, 'connecting the dots' between discontiguous barcode amplicon signals. We find that accurate recovery should be feasible, provided that the barcode signal density is sufficiently high. This study suggests the possibility of mapping the morphology and projection pattern of many individual neurons simultaneously, at high resolution and at large scale, via conventional light microscopy.


Assuntos
Código de Barras de DNA Taxonômico , Imagem Óptica , Código de Barras de DNA Taxonômico/métodos , Neurônios
2.
PLoS Comput Biol ; 17(3): e1008256, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684106

RESUMO

Modern spatial transcriptomics methods can target thousands of different types of RNA transcripts in a single slice of tissue. Many biological applications demand a high spatial density of transcripts relative to the imaging resolution, leading to partial mixing of transcript rolonies in many voxels; unfortunately, current analysis methods do not perform robustly in this highly-mixed setting. Here we develop a new analysis approach, BARcode DEmixing through Non-negative Spatial Regression (BarDensr): we start with a generative model of the physical process that leads to the observed image data and then apply sparse convex optimization methods to estimate the underlying (demixed) rolony densities. We apply BarDensr to simulated and real data and find that it achieves state of the art signal recovery, particularly in densely-labeled regions or data with low spatial resolution. Finally, BarDensr is fast and parallelizable. We provide open-source code as well as an implementation for the 'NeuroCAAS' cloud platform.


Assuntos
Regressão Espacial , Algoritmos , Simulação por Computador , Transcriptoma
3.
Phys Rev E ; 102(2-1): 023304, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942394

RESUMO

A reversible diffusion process is initialized at position x_{0} and run until it first hits any of several targets. What is the probability that it terminates at a particular target? We propose a computationally efficient approach for estimating this probability, focused on those situations in which it takes a long time to hit any target. In these cases, direct simulation of the hitting probabilities becomes prohibitively expensive. On the other hand, if the timescales are sufficiently long, then the system will essentially "forget" its initial condition before it encounters a target. In these cases the hitting probabilities can be accurately approximated using only local simulations around each target, obviating the need for direct simulations. In empirical tests, we find that these local estimates can be computed in the same time it would take to compute a single direct simulation, but that they achieve an accuracy that would require thousands of direct simulation runs.

4.
BMC Bioinformatics ; 20(1): 666, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830902

RESUMO

BACKGROUND: A pairings of nucleotide sequences. Given this forbidding free-energy landscape, mechanisms have evolved that contribute to a directed and efficient folding process, including catalytic proteins and error-detecting chaperones. Among structural RNA molecules we make a distinction between "bound" molecules, which are active as part of ribonucleoprotein (RNP) complexes, and "unbound," with physiological functions performed without necessarily being bound in RNP complexes. We hypothesized that unbound molecules, lacking the partnering structure of a protein, would be more vulnerable than bound molecules to kinetic traps that compete with native stem structures. We defined an "ambiguity index"-a normalized function of the primary and secondary structure of an individual molecule that measures the number of kinetic traps available to nucleotide sequences that are paired in the native structure, presuming that unbound molecules would have lower indexes. The ambiguity index depends on the purported secondary structure, and was computed under both the comparative ("gold standard") and an equilibrium-based prediction which approximates the minimum free energy (MFE) structure. Arguing that kinetically accessible metastable structures might be more biologically relevant than thermodynamic equilibrium structures, we also hypothesized that MFE-derived ambiguities would be less effective in separating bound and unbound molecules. RESULTS: We have introduced an intuitive and easily computed function of primary and secondary structures that measures the availability of complementary sequences that could disrupt the formation of native stems on a given molecule-an ambiguity index. Using comparative secondary structures, the ambiguity index is systematically smaller among unbound than bound molecules, as expected. Furthermore, the effect is lost when the presumably more accurate comparative structure is replaced instead by the MFE structure. CONCLUSIONS: A statistical analysis of the relationship between the primary and secondary structures of non-coding RNA molecules suggests that stem-disrupting kinetic traps are substantially less prevalent in molecules not participating in RNP complexes. In that this distinction is apparent under the comparative but not the MFE secondary structure, the results highlight a possible deficiency in structure predictions when based upon assumptions of thermodynamic equilibrium.


Assuntos
Pareamento de Bases/genética , Dobramento de RNA , Sequência de Bases , Calibragem , Cinética , Conformação de Ácido Nucleico , RNA/química , RNA/genética , Curva ROC , Termodinâmica
5.
Front Integr Neurosci ; 12: 63, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30692920

RESUMO

Approximately three times per second, human visual perception is interrupted by a saccadic eye movement. In addition to taking the eyes to a new location, several lines of evidence suggest that the saccades play multiple roles in visual perception. Indeed, it may be crucial that visual processing is informed about movements of the eyes in order to analyze visual input distinctly and efficiently on each fixation and preserve stable visual perception of the world across saccades. A variety of studies has demonstrated that activity in multiple brain areas is modulated by saccades. The hypothesis tested here is that these signals carry significant information that could be used in visual processing. To test this hypothesis, local field potentials (LFPs) were simultaneously recorded from multiple electrodes in macaque primary visual cortex (V1); support vector machines (SVMs) were used to classify the peri-saccadic LFPs. We find that LFPs in area V1 carry information that can be used to distinguish neural activity associated with fixations from saccades, precisely estimate the onset time of fixations, and reliably infer the directions of saccades. This information may be used by the brain in processes including visual stability, saccadic suppression, receptive field (RF) remapping, fixation amplification, and trans-saccadic visual perception.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...